激光写光电子学进展

基于线性调频脉冲的光纤分布式声波传感技术

马喆^{1†},张明江^{2,3*†},江俊峰^{4,5,6,7},张建忠^{1,3},肖连团^{1,2,3},刘铁根^{4,5,6,7} ¹太原理工大学电子信息与光学工程学院,山西太原 030024; ²太原理工大学物理学院,山西太原 030024; ³太原理工大学新型传感器与智能控制教育部重点实验室,山西太原 030024; ⁴天津大学精密仪器与光电子工程学院,天津 300072 ⁶天津大学光电信息技术教育部重点实验室,天津 300072 ⁶天津大学光虹传感研究所,天津 300072 ⁷天津市光纤传感工程中心,天津 300072

摘要 基于线性调频(LFM)脉冲的光纤分布式声波传感(DAS)技术采用同时具有连续波形和脉冲波形优势的LFM脉冲作为探测光,利用频移产生附加相位实现光纤应变导致相位补偿的原理进行传感。可实现光纤链路沿线声/振信号的定量波形恢复,具有响应速度快、灵敏度高等特点,在地球物理学、线性基础设施监测等领域具有显著的优势和应用前景。论述基于LFM脉冲DAS技术的基本传感机理,概述传感距离、空间分辨率、频率响应与衰落噪声抑制等关键技术指标的研究进展,介绍DAS在典型应用中的进展,并对未来可能发展趋势进行探讨。 关键词 光纤光学;分布式声波传感;线性调频脉冲;瑞利散射;相位解调 中图分类号 TN29 文献标志码 A DOI: 10.3788/LOP230746

Fiber-Optic Distributed Acoustic Sensing Technology Based on Linear Frequency Modulation Pulses

Ma Zhe^{1†}, Zhang Mingjiang^{2,3*†}, Jiang Junfeng^{4,5,6,7}, Zhang Jianzhong^{1,3}, Xiao Liantuan^{1,2,3}, Liu Tiegen^{4,5,6,7}

¹College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China;

²College of Physics, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China;

³Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China;

⁴School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China ⁵Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education,

Tianjin University, Tianjin 300072, China

⁶Institute of Optical Fiber Sensing of Tianjin University, Tianjin 300072, China

⁷Tianjin Optical Fiber Sensing Engineering Center, Tianjin 300072, China

Abstract Fiber-optic distributed acoustic sensing (DAS) technology based on linear frequency modulation (LFM) pulses has gained popularity due to its ability to combine the advantages of both continuous and pulse waveforms in detection light. By utilizing the principle of frequency shift, additional phases can be generated to achieve phase compensation for fiber strain sensing. This technology enables quantitative waveform recovery of acoustic signals at various locations along the fiber optic link, with fast response times and high sensitivity. DAS has significant potential for applications in geophysics and linear infrastructure monitoring. In this study, we discuss the basic sensing mechanism of LFM pulse-based DAS technology,

收稿日期: 2023-03-01;修回日期: 2023-04-20;录用日期: 2023-04-28;网络首发日期: 2023-05-08

基金项目:国家自然科学基金(62205237,62075151,62075153,62205234)、山西省青年科学基金(20210302124396,202103021223042)、 山西省重点研发计划(202102150101004)

通信作者: ^{*}zhangmingjiang@tyut.edu.cn [†] 共同第一作者

present research progress on key scientific and technical indicators such as sensing distance, spatial resolution, frequency response, and fading noise suppression, and introduce the progress of DAS in typical applications. Finally, we discuss possible future development trends.

Key words fiber optics; distributed acoustic sensor; linear frequency modulation pulse; Rayleigh scattering; phase demodulation

1 引 言

光纤分布式声波传感(DAS)技术是一种利用光 纤中后向瑞利散射来定位和恢复光纤链路上任意位置 环境物理量变化的先进感知技术^[1-2],该技术具有环境 适应性强、传感范围大、信道间光速同步、时空分辨精 度高等优势。目前,DAS技术已经在地球物理勘探与 地震学^[3]、油气资源勘探^[4]以及一系列线性基础设施安 全在线监测^[5]等领域展示出独特的技术优势和巨大的 应用潜力,其应用领域仍在进一步拓展中。

基于光纤瑞利散射的DAS技术从强度检测的定性 阶段逐渐发展到波形恢复的定量阶段。前者又称为光 纤分布式振动传感(DVS)技术^[6],仅对整条光纤链路的 振动事件进行定位和事件频率信息进行表征,其主要对 振动信号进行定性检测,无法正确恢复振动信号的波形 信息。后者则为狭义的DAS技术,大多通过解调单色 光脉冲的散射相位信息或调谐光波的散射频率信息,获 取光波时延信息并线性重建外界扰动变化。DAS技术

的发展脉络可以按调制脉冲的频率成分依次划分为单 频脉冲DAS技术、多频脉冲DAS技术和线性调频 (LFM)脉冲DAS技术,如图1所示。多数的DAS系统 均使用单频脉冲结合不同的探测结构和不同的相位解 调方法来实现传感测量。根据探测结构的不同,DAS 系统可分为直接探测方式和相干探测方式两大类,其中 相干探测方式的相位敏感光时域反射(φ -OTDR)技 术^[7-9]通常称为相干光时域反射(COTDR)技术^[10]。与 探测方式相对应的相位解调与定量测量方案,包括3× 3耦合器解调法^[11-12]、相位生成载波(PGC)解调法^[13-14]、 数字同相正交(IQ)相位解调法^[15-16]和差分相位解调 法^[17-18]等。在单频脉冲DAS系统的基础上,逐步演化出 了双频脉冲^[19-20]和多频脉冲DAS传感技术^[21-22]。与单 频脉冲 φ -OTDR传感技术相比,多频脉冲技术的优势 主要体现在两方面[21]:1) 避免脉冲重复频率的限制,突 破测量带宽的限制;2)实现干涉噪声的抑制。不同频 率光脉冲的相干瑞利散射曲线衰落位置不同,使用多频 脉冲技术可以减弱衰落噪声的影响。

图 1 根据调制脉冲频率成分的 DAS 技术分类。(a)单频脉冲 φ-OTDR;(b)多频脉冲 φ-OTDR;(c)LFM 脉冲 φ-OTDR Fig. 1 DAS technical classification based on modulated pulse frequency components. (a) Single frequency pulse φ-OTDR; (b) multifrequency pulse φ-OTDR; (c) LFM pulse φ-OTDR

线性频率调制是一种综合连续波形和脉冲波形优势的扩频调制技术,可打破脉冲宽度和空间分辨率的限制,被广泛应用于雷达和激光雷达的距离和速度测量^[23-25],近年来这项技术陆续被研究人员引入DAS中。本文从LFM脉冲DAS技术的基本传感机理和关键科学技术指标的提升两个方面,综述了近些年基于LFM脉冲DAS技术的重要进展,并列举了几种典型应用场景,对未来进一步发展需要突破的关键问题进行探讨。

2 基于LFM脉冲DAS技术的基本传感 机理

基于光纤后向瑞利散射的光时域反射(OTDR)技术属于脉冲内散射点干涉信号的直接探测技术,其探测灵敏度高,目前大多数DAS系统均是基于 *φ*-OTDR架构。部分研究人员基于光频域反射(OFDR)技术^[26]的结构也开展相关研究。与OTDR技术相比,OFDR有空间分辨率高和动态范围大的特点,但受光源噪声的影响远

距离待测光纤位置的相位解调会出现失真问题,因此该 技术通常适用于短距离和高空间分辨率的领域。基于 OFDR技术衍生的时间门控数字光频域反射仪(TGD-OFDR)DAS系统^[27]采用LFM脉冲结合匹配滤波技术, 可实现长传感距离和高空间分辨率的同时,还可对声振 信号进行感知。采用离散散射理论模型对LFM脉冲 DAS技术在*q*-OTDR架构的传感机理进行阐述。

2.1 基于 φ -OTDR分布式传感的基本原理

使用简化的光纤模型对 φ -OTDR的工作原理进行分析,仅考虑两个散射单元($z_{i=a}$ 和 $z_{i=b}$)。假设每个散射单元均呈相同的散射系数 ρ ,入射激光的振幅为 E_0 ,激光频率为 f_0 。简化后的模型示意图如图 2(a)所

第 60 卷第 11 期/2023 年 6 月/激光与光电子学进展

示, E_a 、 E_b 分别为位置 z_0 处检测到散射单元 $z_{i=a}$ 和 $z_{i=b}$ 的后向散射信号:

$$E_{a(z=z_0)} = E_0 \cdot \rho \cdot \exp\left[j(2\pi f_0 t + \varphi_0)\right], \qquad (1)$$

$$E_{b(z=z_{0})} = E_{0} \cdot \rho \cdot \exp\{j[2\pi f_{0}(t-t_{ab})+\varphi_{0}]\}, \quad (2)$$

式中: $t_{ab} = 2n_0(z_b - z_a)/c$,激光从散射单元位置 $z_{i=a}$ 到 $z_{i=b}$ 产生了额外的相位 $\varphi_{ab} = 2\pi f_0 t_{ab}$ 。因此,式(2)可 改写为

 $E_{b(z=z_{0})} = E_{0} \cdot \rho \cdot \exp\{j[2\pi f_{0}t + \varphi_{0} + \varphi_{ab}]\}, \quad (3)$ 沿 光 路 $[z_{0}, z_{a}]$ 和 $[z_{0}, z_{b}]$ 的 相应相位值分别为 φ_{0} 和 $\varphi_{0} + \varphi_{abo}$ 此时,在 z_{0} 处探测到的光强为

$$I_{(z=z_0)} = |E_{a} + E_{b}|^{2} = 2|E_{0}\rho|^{2}(1 + \cos\varphi_{ab})_{o} \quad (4)$$

图 2 φ-OTDR 离散散射单元简化模型。(a)无扰动;(b)有扰动 Fig. 2 φ-OTDR discrete scattering element simplified model. (a) Without disturbance; (b) disturbance

如图 2(b)所示,当散射单元 z_b受外界扰动引起折 射率发生改变后[z_a, z_b]光路的光程差将发生改变,并 产生一个额外的相位差 Δφ。此时,散射单元 z_b的后向 散射信号可表示为

 $E'_{b(z=z_{0})} = E_{0} \cdot \rho \cdot \exp\{j[2\pi f_{0}t + \varphi_{0} + \varphi'_{ab}]\}, \quad (5)$ $\vec{x} \oplus : \varphi'_{ab} = \varphi_{ab} + \Delta \varphi_{0} \quad \text{itd}, \text{f} z_{0} \notin \mathbb{R} \text{ [M]} \text{ M} \text{ M} \text{ H} \text{ M}$ $I'_{(z=z_{0})} = |E_{a} + E'_{b}|^{2} = 2|E_{0}\rho|^{2}[1 + \cos(\varphi_{ab} + \Delta \varphi)]_{0} \quad (6)$

由以上分析可知,当外界环境的温度或应变引起 光纤某个位置的折射率改变后, *φ*-OTDR 对来自不同 散射单元的后向散射之间相对相位变化具有敏感性。 根据两个散射单元的简化分析模型,将该模型扩展到 大量的散射单元进行分析。散射效应是由纤维制造过 程中的随机密度波动产生的,虽然瑞利散射过程随机 发生,但如果光纤保持完全稳定状态,散射信号的振幅 和相对相位将保持不变。这说明 *φ*_{ab}的值(随机且固 定)有助于保持最终的后向散射轨迹。

由图 2(b)可知,脉冲光在光纤中传播时,被其覆盖的散射单元均产生后向散射光,其中部分散射单元 的后向散射光将发生重叠并同时达到光纤入射端,该 过程中重叠的后向散射光将发生干涉。光脉冲到达光 纤中某个位置*z*所需的时间为 $t_z = z/v_g$,因此该位置的 后向散射光需要 $t = 2t_z$ 的时间才能返回z = 0的初始 位置进而被探测。光脉冲覆盖部分的一半最终将被探 测,其为包含M个散射单元的总和 $E_{(t=2t_u,z=0)}$, $E_{(t=2t_u,z=0)}$ 可表示为

$$E_{(t=2t,z=0)} = E_0 \exp\left(-\frac{\alpha z}{2}\right) \exp\left(j2\pi f_0 t\right) \sum_{m=1}^M \rho_m \exp\left(j\varphi_m\right), \quad (7)$$

式中: α为光纤衰减系数; ρ_m为第m个散射单元的散射 系数。此处忽略光纤的损耗, 在初始位置 z = 0 处的归 一化光强 I 为

$$I = |E|^{2} = \left|\sum_{m=1}^{M} \rho_{m} \exp(j\varphi_{m})\right|^{2} = \sum_{m=1}^{M} \rho_{m}^{2} + 2\sum_{i=1}^{M-1} \sum_{i=j+1}^{M} \rho_{i} \rho_{j} \cos(\varphi_{i} - \varphi_{j}) .$$
(8)

由式(8)可知,不同散射单元的后向瑞利散射光之 间发生的干涉可通过相干时域信号进行探测。这些散 射单元的位置是随机的,所以 φ -OTDR的时间序列通 常沿着光纤随机振荡。根据以上对静态光纤的光强分 析,现假设在第p个散射单元施加一个相位变化 ϕ_p ,其 中 $p \in [1, M]$ 。施加干扰后的光强I'与静态的光强I之

间相应的光强变化ΔI为

$$\Delta I = 2 \sum_{i=1}^{p-1} \sum_{i=p}^{M} \rho_i \rho_j \Big[\cos\left(\varphi_i - \varphi_j - \phi_p\right) - \cos\left(\varphi_i - \varphi_j\right) \Big]_{\circ}$$
(9)

受干扰和未受干扰的信号具有相关的指数概率分 布,因此强度变化的概率分布服从拉普拉斯分布^[28]。由 式(9)可知,当第p个散射单元的相对相位变化 $\varphi_i - \varphi_j$ 包含在半脉宽内才会引起光强差 ΔI 改变。扰动仅影响 相应的区域,而相干时域信号的其余部分保持不变,因 此基于 φ -OTDR的传感系统可沿光纤不同位置进行定 位。此外,除了 ϕ_p 的值非常小,由光纤中的扰动引起的 强度变化不是线性关系。因此,要实现线性响应测量则 需采用相位检测^[15,17,29]或频率扫描^[30-31]等其他技术。

根据以上定点离散散射单元的扰动分析进一步推 广到包含大量散射单元的情况。此时,包含在扰动部 分中的所有散射单元将经历微小的相位变化。根据相 位差和光程差(OPD)的关系,可得从扰动部分初始位 置到结束位置的总累积相位变化为

$$\Delta \phi = \frac{2\pi \Delta f_{\text{OPD}}}{\lambda} = \frac{2\pi}{\lambda} (\Delta n \times z + n \times \Delta z), \quad (10)$$

式中: Δn 为由温度 ΔT 或应变 $\Delta \epsilon$ 沿光纤位置 Δz 变化 引起的折射率变化; Δf_{OPD} 为 OPD 变化; λ 为激光的波 长。值得注意的是,应变扰动本质上引起的是光程差 的变化而不会真正引起折射率的改变,这里的光程差 变化可以用等效折射率变化来描述。

根据文献[30]可知折射率变化 Δn 与温度 ΔT 和应变 $\Delta \epsilon$ 的关系,在此统一使用光程差变化 Δf_{OPD} 来完善理论:

$$\frac{\Delta n}{n} \approx \frac{\Delta f_{\text{OPD}}}{f_{\text{OPD}}} = K_{\varepsilon} \Delta \varepsilon + K_{\text{T}} \Delta T, \qquad (11)$$

式中: K_{ε} 为应变系数, $K_{\varepsilon} \approx -0.78\varepsilon^{-1}$; K_{T} 为温度系数, $K_{T} \approx -6.92 \times 10^{-6} \mathbb{C}^{-1}$ 。由文献[30]可知,激光频率 (波长)偏移可以补偿微小折射率变化,即 $\Delta n/n$ 可用 $\Delta f/f$ 来代替,f为激光频率。因此,式(10)、式(11)可改写为

$$\Delta \phi = \frac{2\pi \Delta f_{\text{OPD}}}{\lambda} = 2\pi \left(\Delta f \times f_{\text{OPD}} + \Delta f_{\text{OPD}} \times f \right), (12)$$
$$\frac{\Delta n}{n} \approx \frac{\Delta f_{\text{OPD}}}{f_{\text{OPD}}} = \frac{\Delta f}{f} = K_{\epsilon} \Delta \epsilon + K_{\text{T}} \Delta T_{\circ} \qquad (13)$$

2.2 LFM 脉冲的离散散射理论模型

首先定义LFM脉冲曲线 P_{LFM} ,该曲线振幅为 E_0 、持续时间为T,且瞬时频率为 $f_{(t)} = f_s + \frac{\mu t}{T}$ 。 P_{LFM} 可表示为 $P_{\text{LFM}} = \operatorname{rect}\left(\frac{t}{T}\right) E_0 \exp\left[j2\pi \left(f_0 - f_{(t)}\right)t\right], \quad (14)$

式中: f_s 为LFM脉冲的初始频率; μ 为LFM脉冲的调 频斜率, $\mu = (f_e - f_s)/T$, f_e 为LFM脉冲的截止频率; j为虚数;t为时间; f_o 为激光器的输出频率;rect(•)为矩 形函数,当0 $\leq x \leq 1$ 时,rect(x)=1,其他情况为0。

当脉冲PLEM沿光纤传播时,在每一个时刻,LFM

脉冲的每一个微小部分均会产生瑞利后向散射光。因此,后向散射信号连续产生且在不同时刻不同位置产生的后向散射信号将重叠产生 φ -OTDR信号E(t), t时刻在传感光纤的反射端接收到该信号。为了简化 模型,将LFM脉冲对应的空间长度划分为一系列长度 相等的离散散射单元,记作 $[z_1, z_2, \dots, z_n]$,相应离散散 射单元的光频率记作 $[f_1, f_2, \dots, f_n]$,如图 3所示。因此, P_{LFM} 沿着光纤传播的表达式可以用多个散射单元 累计求和的形式给出:

$$E(t) = \operatorname{rect}\left(\frac{t-\tau_i}{T}\right) \sum_{i=1}^{n} \rho_i \exp\left(-\frac{\alpha z_i}{2}\right) \\ \exp\left\{j2\pi \left[f_0 - f_{(t-\tau_i)}\right](t-\tau_i)\right\},$$
(15)

式中: ρ_i 为每个离散散射单元对应的散射系数; f_0 为激 光器的光频率。当脉冲 P_{LFM} 沿着光纤传播时,产生的 散射光强E(t)由n个散射单元累积实现。当未发生 OPD变化时,后向相干瑞利散射时域信号轨迹保持不 变,整个LFM脉冲的散射信号如图3所示。假设第i个离散散射单元 z_i 位置处受到外界动态应变 ϵ_i 使得 OPD发生微小改变,根据式(12)可知,要保证初始相 位值 φ 不发生改变则需要改变激光频率来进行补偿。 该方案使用了LFM脉冲,激光频率与时间呈线性变 化,直接体现为相干瑞利散射时域信号的平移,图3中 两条曲线对应的相位相同。每个离散单元对应的相位 大小为 $\varphi_i = 2\pi n f_i t_i$,对光纤中任意两个位置散射信号 之间的相位差 φ_i 为

$$\varphi_{ij} = 2\pi n (f_j - f_i) (t_j - t_i)_{\circ}$$
(16)

图 3 LFM 脉冲分布式声传感离散理论模型 Fig. 3 Discrete theoretical model of LFM pulse distributed acoustic sensing

由式(16)可知,扰动引起的微小光程差的变化可 以通过相干瑞利散射时域信号的水平移动来补偿(此 处暂不考虑噪声引起信号的抖动)。因此,ε和Δt之间 的关系可表示为

$$\epsilon = \frac{1}{K_{\epsilon}} \frac{\Delta f}{f} = \frac{1}{K_{\epsilon}} \frac{\mu}{f} \Delta t_{\circ}$$
(17)

以上是基于LFM脉冲 φ -OTDR传感器的测量原 理,图3为 $\Delta \varepsilon_{\lambda} f \pi \Delta t \dot{z}$ 间的关系。假如在光纤的某 个位置z受到动态应变引起光程差发生改变,则该位 置的局部时域信号E(t)将发生水平偏移 Δt ,相应的频 移变化 Δf 可用于补偿光程差的变化 Δf_{OPD} 。通过计算 两次连续测量得到时域信号的局部相关性,可以确定 两个不同时域信号沿光纤的局部时移 Δt 的变化。

时移 Δt 通常对相邻两帧相干时域信号的子序列 使用时间延迟估计法(TDE)^[32]来进行估计,最常见的 方法是通过两个信号的快速互相关运算,通过记录相 关峰的轨迹即可获得 Δt 的值。该运算具体过程为

$$\Lambda_{(i)} = \max \left\{ \operatorname{corrcoef} \left[E_i(t - w_{\mathrm{T}}, t + w_{\mathrm{T}}), \\ E_{i+1}(t - w_{\mathrm{T}}, t + w_{\mathrm{T}}) \right] \right\},$$
(18)

式中:corrcoef(•)为相关系数函数。

将相干时域信号的子序列平移变化记为 $\Lambda_{(i)}$,通过 记录先后注入光纤中脉冲的后向相干瑞利散射时域信 号 $E_i 和 E_{i+1}$,使用逐点滑移选取窗口 $w_{\rm T}$ 的信号提取 算法对相邻两帧时域信号求最大互相关系数,其中 $w_{\rm T}$ 与脉冲持续时间相当。

2.3 LFM 脉冲 DAS 系统的探测结构比较

基于 LFM 脉冲 DAS 系统的典型结构如图 4 所示,采用具有长期稳定性的窄线宽激光器作为光源,产生的高相干光经过光纤耦合器被分为两路,一路作为本地参考光(LO),另一路被调制为 LFM 脉冲作为探测光脉冲,经 EDFA 放大后经光环形器注入传感光纤进而产生后向瑞利散射(RBS)光。RBS 光和 LO 发生干涉后由平衡探测器(BPD)转换为电信号后进行采集处理。也有研究人员使用无 LO 的直接探测结构,对两种结构进行比较分析。

根据部分离散理论模型,LFM光脉冲注入光纤后的 RBS光示意图如图 5 所示^[33],在某一时刻返回接收端的 RBS光,可以认为是探测光脉冲前半部分所覆盖的散射点产生的 RBS光的叠加。为了方便分析,将整个 LFM 脉冲光对应光纤位置的 PSL 以单个频率成分划分为一系列长度相等的离散散射单元,记作

图 5 LFM脉冲在光纤中的离散散射模型 Fig. 5 Discrete scattering model of LFM pulse in optical fiber

 $[z_1, z_2, \dots, z_n]$,相应离散散射单元的光频率记作 $[f_1, f_2, \dots, f_n]$ 。假设经过时间延迟 τ_i 后RBS光返回到 接收端的光场表达式为

$$E(t) = \sum_{i=1}^{n} \rho_{i} \exp\left(-\frac{\alpha z_{i}}{2}\right)$$
$$\exp\left\{j\left[2\pi f_{0}-2\pi f_{s}-\pi \mu(t-\tau_{i})\right](t-\tau_{i})\right\} \operatorname{rect}\left(\frac{t-\tau_{i}}{T}\right),$$
(19)

式中: ρ_i 为每个离散散射单元对应的散射系数; α 为光 纤的衰减系数。从初始位置到第i个散射单元的时间 延迟 τ_i 和相应的距离满足 $z_i = (c\tau_i)/2n, c$ 为光在真空 中的速度。

待测事件长度小于 PSL 时,在不失一般性的前提 下,将发生动态应变的光纤区域记作 B,而整个 PSL 为 A+B+C,如图 5 所示,对应于 B 区域的整个均匀相位 变化记作 Δφ。对直接检测结构而言,任何两个不同的 散射单元 z_i 和 z_j之间都会发生干涉。因此,光电探测 器光电流的交流分量和相位差 φ_{ij}的关系式为

$$I_{\text{Direct}} = \sum I_{\text{R,S}}, R, S \subseteq \{AA, BB, CC, AB, AC, BC\}, (20)$$

$$I_{\mathrm{R,S}} = 2 \sum_{i \in R} \sum_{j \in S \& j \neq i} \rho_i \rho_j \cos \varphi_{ij}, \qquad (21)$$

$$\varphi_{ij} = \varphi_j - \varphi_i = \frac{4\pi n \left(f_j - f_i\right) \left(z_j - z_i\right)}{c}, \quad (22)$$

式中: $R \ S$ 为干涉发生的任意两个区域, 二者满足 以下集合关系: $R \subseteq \{A, B, C\}, S \subseteq \{A, B, C\}$ 。由于 脉冲内干涉现象发生在任意两个离散单元之间, 因此R和S均满足以下集合关系: $R, S \subseteq \{AA, BB, CC, AB, AC, BC\}$ 。只有 I_{Direct} 的干涉分量产 生于B区域的任意一点和A或C区域的任意一点之间 时,例如 $i \in B$ 同时 $j \in A \& C$,将引起相位的变化。每个 干涉分量的相位变化不同, 总的干涉信号 I_{Direct} 会发生 较大的变化, 很难保持原来的相干时域包络形态。对 相干探测方式而言, 各离散散射单元的 RBS 光与参考 光 $E_{\text{LO}}(t)$ 之间发生干涉, 干涉信号的强度高于 RBS 光

第 60 卷第 11 期/2023 年 6 月/激光与光电子学进展

脉冲内任意两个散射单元之间的干涉强度。因此, BPD输出的交流分量 $I_{Coherent}$ 和相位差 Φ_i 分别为

$$I_{\text{Coherent}} = 2A_{\text{LO}} \exp\left(j2\pi f_0 t\right) \sum_{i=1}^n \rho_i \cos \Phi_i, \quad (23)$$

$$\Phi_{i} = \varphi_{i} + \varphi_{0} = \frac{4\pi n (f_{i} - f_{1})(z_{i} - z_{1})}{c}, \quad (24)$$

式中: A_{LO} 为参考光的振幅; φ_0 为探测脉冲当前所在位 置的公共相位,是特定位置的常数。当散射单元i分 别处于 $A_{A}B_{A}C$ 3个区域时对应的相位变化分别为 $\Phi_{A}^{i} = \varphi_{i} + \varphi_{0}, \Phi_{B}^{i} = \varphi_{i} + \varphi_{0} + i \cdot \delta \phi, \Phi_{C}^{i} = \varphi_{i} + \varphi_{0} + \Delta \varphi$ 。 $\delta \phi$ 为B区域各散射单元的相位变化,假设B区域 的散射单元数量为N,则 $\Delta \varphi = \delta \phi$ 之间的关系为 $\Delta \varphi = N \cdot \delta \phi$ 。因此,相干探测方式的相干时域信号包络可以 稳定保持,比直接探测方式更适用于时延估计法来进 行相位解调。另外,相干探测方式的信号与直接探测 方式相比具有双倍增益,同时抑制共模噪声。

2.4 LFM 脉冲 DAS 的传感原理分类

线性频率调制是一种综合连续波形和脉冲波形优势的扩频调制技术,广泛应用于雷达和激光雷达的距离和速度测量,该项技术陆续被研究人员引入DAS。根据所使用LFM脉冲的长短可将基于LFM脉冲的

DAS分为瑞利干涉图样法^[30,34-36]和光脉冲压缩法^[37-39]。 目前基于LFM脉冲的传感技术大多使用的脉冲 宽度为百纳秒级,该方法一般是从时域角度对瑞利干 涉图样进行分析,大致可分为3类。第一类通过依次 扫描φ-OTDR的光学频率来实现对折射率变化非常 敏感的静态测量,可用于温度^[30]、应变^[31]和双折射^[40-41] 测量。2009年,Koyamada等^[30]提出一种通过控制激 光光源频率来实现应变和温度精确测量的方法,其工 作原理是利用光脉冲的频率偏移来补偿光纤中的折射 率变化。步进式频率扫描和数据处理结构如图6所 示。假设 f_0 为激光器的初始频率,以 Δf 为步进间隔不 断调节激光器的光频,将采集不同激光频率下N个脉 冲的相干探测信号作为参考,记作采样时间为T_a。与 另一采样时间 T_b下不同激光频率的相干探测信号沿 着距离轴进行相关运算,例如采样时间T。中的序列m 和采样时间T。中的序列m+1,通过记录相关峰的峰 值在频域上的移动轨迹即可获得光纤沿线的应变或温 度的变化情况。通过使用上述方法,实现8km传感距 离上的分布式温度测量。该方案需要对激光器的频率 进行步进式扫描,完成一次测量的等待时间较长,在这 种情况下测量时间和系统的复杂性都会增加,因此该 系统仅适合静态或准动态的应变和温度的测量。

图 6 步进式频率扫描传感测量原理。(a)步进频率扫描;(b)数据处理结构

Fig. 6 Principle of step frequency scanning sensor. (a) Step frequency scanning; (b) data processing structure

2015年,Zhou等^[31]通过比较不同激光频率下的信号模 式来检测光纤的应变,并从任意激光频率的信号中同时 检测出光纤的振动。利用相同频率的光脉冲产生信号 检测光纤振动,利用不同频率的光脉冲检测光纤应变。

第二类使用单个 LFM 光脉冲作为探测脉冲可实 现对第一类系统的简化,瑞利干涉图样的偏移直接反 映了应变变化特征。根据上述方案的原理, Pastor-Graells等^[34]于2016年提出使用LFM脉冲代替需要不 断步进式扫频的方法,该传感方案可以在一个往返时 间中发送具有多个频率成分的光脉冲,其频移补偿原 理如图7所示。LFM脉冲在采样时间T_a和T_b时刻分 别得到两个不同的相干瑞利散射时域序列,通过沿距 离轴对两个信号进行互相关运算来实现应变、温度以 及动态应变的测量,该方案显著提高了系统的测量速 度。不过该方案中的LFM脉冲是通过改变激光驱动 电流调制来模拟产生的,因此需要不断对瞬时频率进 行校准工作。随后该组研究人员基于此原理相继提出 一些改进的方案来提高传感系统指标^[42-48]。本课题组 基于LFM脉冲的DAS结合并行计算对信号进行处 理,分析了并行计算参数线程块大小对并行线程利用 效率的影响,以及计算数据量对并行计算加速效果的 影响,滑窗相关计算的速度提高了85.31倍^[49]。

第 60 卷第 11 期/2023 年 6 月/激光与光电子学进展

第三类是基于LFM脉冲的另一种分析方法,采用 波长扫描法沿波长域进行相关分析也可以实现动态应 变的测量。2018年,Liehr等^[35]提出波长扫描相干光时 域反射技术沿激光频率轴提取相干瑞利散射时域信号 进行相关分析实现了动态应变的测量,该方法的基本

原理和数据处理结构如图8所示,由于不需要高带宽

Fig. 8 Sensing principle of wavelength scanning method. (a) Wavelength scanning; (b) data processing structure

采样和光电探测硬件,系统复杂性进一步降低。LFM (即波长扫描)范围从f₀连续扫描到f_N,对应的N个脉 冲序列定义为一个完整的采样时间。通过对距离轴上 某一位置处的相邻采样时间(T_s和T_{s+1})内的相干瑞 利散射时域信号采用最小二乘相关运算来确定频率的 漂移量进而得到应变或温度的变化。

另一种方法则是使用微秒级的长脉冲结合匹配滤 波器或非匹配滤波器对LFM脉冲进行压缩,如图9所 示^[50]。平衡光电探测器输出的光电流信号*i*(*t*)是多个 延时不同、幅度系数不同的LFM脉冲s(t)叠加。在数 字域,数字LFM脉冲h(t)被用来处理原始信号i(t), 如果h(t)的参数与s(t)完全相同,则称h(t)为匹配滤 波器;否则,被称为非匹配滤波器。无论是匹配滤波还 是非匹配滤波,经过h(t)处理后,i(t)中的s(t)被压缩 成新的脉冲,压缩后的LFM脉冲充分利用了光脉冲的 能量,其主瓣的半高全宽决定了空间分辨率,在频域对 干涉信号进行处理进而实现高空间分辨率的传感测 量。2015年, Wang等^[37]使用匹配滤波器对LFM脉冲 的散射信号进行压缩,并结合光学混合器实现了空间 分辨率为 3.5 m 的振动信号动态测量。2017年, Lu等[38]使用LFM脉冲作为探测光脉冲,在接收器中 使用匹配滤波器来压缩处理后的脉冲宽度,使得普通 φ -OTDR的传感距离和空间分辨率矛盾得以缓解。 2018年, Mompó等^[30]提出使用线性频率调制的高斯型 LFM 脉冲在光学脉冲压缩反射计,通过调节激光器驱 动电流实现频率扫描,最终实现了50km光纤链路末 端的动态事件检测。2019年, Chen等^[51]提出非匹配滤

图 9 脉冲压缩的基本原理^[50]。(a)匹配滤波器;(b)非匹配滤波器 Fig. 9 Basic principle of pulse compression^[50]. (a) Matched filter; (b) unmatched filter

波器算法,将瑞利快速频率解调法用于基于 TGD-OFDR的 DAS系统,其空间分辨率由脉宽和非匹配率 共同决定,使得此类系统灵活可调且对衰落噪声免疫。 整理归纳了基于 LFM 脉冲 DAS 的传感原理分类及特 点比较,如表1所示。

Table 1 Classification and comparison of sensing principles based on D1 in pulse D165					
Classification	Reference	Key technology Technical characteristics			
	[30]		Static measurement (temperature, strain, etc);		
Time domain		Stepping frequency scanning method	Cross correlation along fiber distance;		
			Complex system with long measurement time		
	[34]		Static and dynamic measurement;		
		Linear frequency scanning method	Cross correlation along fiber distance;		
			Single shot measurement		
	[35]		Static and dynamic measurement;		
		Wavelength scanning method	Cross correlation along laser frequency;		
			Simple system solution		
Frequency domain	[37]		Static and dynamic measurement;		
		Long pulse combined with pulse compression	Rayleigh fast frequency demodulation; High spatial resolution		

表1 基于LFM脉冲DAS的传感原理分类及比较

`ahle 1	Classification	and comr	varison (of sensing	principles	hased	on LEM	nulse DAS
abici	Classification	and comp	Jan 15011 (Ji sensing	principies	Dascu		puise Dris

3 基于LFM脉冲的DAS性能指标发展 历程

基于 LFM 脉冲的 DAS 与 φ -OTDR 的传感系统一样,存在传感距离与空间分辨率、频率响应等性能指标 之间的制衡问题。系统的信噪比取决于所使用光脉冲 的能量大小,当增加输入光脉冲的峰值功率或脉冲持续时间可以实现传感距离和信噪比的提升时,空间分辨率也同时受到影响。然而,光纤中的非线性折射(克尔效应)会引起一系列非线性效应,如自相位调制和调制不稳定性效应等,因此光脉冲的峰值功率不能无限增加。此外,激光的相位噪声、LFM脉冲的信号质量

和系统衰落噪声等因素也会对LFM脉冲的DAS性能 有直接的影响,因此需要根据实际工程需求来权衡各 个性能指标的提升方案。将从传感距离、空间分辨率、 频率响应与衰落噪声抑制4个关键技术指标分别对基 于LFM脉冲的DAS性能指标发展进行梳理。

3.1 传感距离

为了解决传统OFDR中传感距离和空间分辨率之 间的矛盾,Liu等^[27]提出TGD-OFDR技术,在时间窗口 内扫描探测光束的频率,而参考光保持频率稳定的连续 光波,通过数字域等效参考实现频率-距离的映射。在 长度为110 km的传感光纤上获得了1.6 m的空间分辨 率。随后,Steinberg等^[52]在OFDR中使用了时频混合 技术。在LFM脉冲中,通过门控询问信号可以获得具 有极高扫描速率的可调谐测量窗口,在101 km 处实现 了空间分辨率为1.4m的超灵敏动态传感。之后,Chen 等^[53]将LFM脉冲的形状预调制到标准汉宁窗口中抑制 串扰,双向一阶分布式拉曼放大技术被用于TGD-OFDR的DAS系统,实现了108 km的传感距离和5 m 空间分辨率的动态测量。此外,Xiong等^[54]提出了一种 子啁啾脉冲提取算法,以取代传统方案中耗时的扫描过 程,该算法可以提取子啁啾脉冲的瑞利散射信号,其啁 啾率可不同于探测啁啾脉冲的啁啾率。在没有分布式 拉曼放大的情况下,系统中传感范围为75km,空间分

第60卷第11期/2023年6月/激光与光电子学进展 辨率为2m。此外,Zhang等^[55]提出了一种多频非线性 调频(NLEM) 探测脉冲 按脉冲使用具有真产源加制块

研率为2 m。此外, Zhang 等 提出 J 一种多频非线性 调频(NLFM)探测脉冲,该脉冲使用具有高旁瓣抑制比 的 NLFM 脉冲来抑制相邻反向散射点的串扰。预失真 多频技术抑制了光学非线性效应,提高了系统的探测脉 冲能量,从而增强了直接检测结构的φ-OTDR的传感 距离。Pastor-Graells等^[43]将LFM 脉冲信号与双向一 阶拉曼放大技术相结合,在直接检测的情况下实现了 75 km的传感范围和10 m的空间分辨率。本课题组通 过使用双LFM 脉冲和WFBG 阵列的相互作用产生具 有固定载波频率的干涉脉冲感知光纤的应变,并使用基 于离散傅里叶变化的相位提取方法,提取干涉脉冲的相 位变化以对应光纤上的应变。所提系统可以实现 101.64 km光纤末端的声传感^[56]。

Ip等使用频率分集 LFM 脉冲 DAS 通过相关检测、分集组合和双向全拉曼放大实现了超过 1000 km 的 DAS 实验。当标距长度为 20 m 时,系统实现了约 100 ps/√Hz 的传感性能,成功观察过往车辆、火车和 建筑造成的真实振动。图 10 为一段现场光纤 40 s 周 期内的瀑布图,分别展示了火车正反向经过某地点、没 有火车经过的环境情况,以及地埋光纤附近的周期性 机械事件。同时还使用无频率分集 LFM 脉冲 DAS 实现 210 km 范围内动态事件的实时监测能力,结果如 图 11 所示^[57]。

图 10 一段现场光纤 40 s 周期内的瀑布图^[57]

3.2 空间分辨率

研究人员基于LFM脉冲的时域或频率DAS系统, 先后提出不同的方案来对空间分辨率进行优化。对时 域系统而言,Pastor-Graells等^[42]受啁啾脉冲放大概念的 启发,使用线性啁啾光纤布拉格光栅对输入超短探测脉 冲进行物理时间拉伸和放大。大大增加了探测脉冲的

图 11 实时 LFM 脉冲 DAS 生成的全长 209.4 km 链路的瀑布图^[57] Fig. 11 Waterfall plot for the full 209.4 km link produced by the real-time LFM-DAS^[57]

能量,同时避免了光纤内的非线性相互作用,并在不影响空间分辨率的情况下实现了信噪比的提高。最终该系统实现了1.8 cm的空间分辨率,同时信噪比提高了20 dB。Wu等^[58]采用了LFM脉冲和相位噪声补偿技术,结合弱反射器阵列在20 km链路中实现20 m的空间分辨率和500 Hz~2.5 kHz的频率响应。Lu等^[38]使用

具有更高脉冲能量的 LFM 脉冲并结合匹配滤波器来压缩处理,在19.8 km 的传感光纤中实现了30 cm 的空间分辨率,信噪比约为10 dB。Mompó等^[39]使用基于 LFM 的高斯探测脉冲和相干检测来降低旁瓣,实现了50 km 光纤链路末端的34 cm 空间分辨率的500 Hz 动态事件测量,实验装置图和空间分辨率结果如图 12 所示。

图12 光脉冲压缩反射技术。(a)实验装置;(b)高斯型脉冲的空间分辨率^[39]

Fig. 12 Optical pulse compression reflectometry. (a) Experimental setup; (b) spatial resolution of Gaussian pulse^[39]

在 OFDR 系统中, Wang 等^[37]使用 LFM 脉冲结合脉冲压缩技术在 40 km 的传感范围内测量频率达到 600 Hz,并获得 3.5 m 的空间分辨率。Chen 等^[39]分析了 相位噪声和后向散射强度之间的关系,提出基于 LFM 脉冲的内脉冲分频方法,实现了 35 km 光纤上 1.25 kHz 的振动响应带宽, 空间分辨率接近 5 m。随后, Chen

等^[51]通过结合光学LFM脉冲和非匹配滤波器方法改进 了上述系统方案,采用瑞利干涉图样法对振动信号进行 解调,在10km传感距离上实现了2m的空间分辨率,信 噪比为35dB,实验装置和结果如图13所示。

3.3 频率响应

在实际工程应用中,频率的检测范围直接决定了

第 60 卷第 11 期/2023 年 6 月/激光与光电子学进展

声振信号的检测情况。因此,频率响应始终是DAS中 有价值的参数之一。基于LFM脉冲的DAS技术也不 断改进,以提高频率响应范围。为了通过相干检测改 善 φ -OTDR系统的频率响应,Wang等^[60]提出基于 LFM脉冲和匹配滤波器的测量方案,通过避免耗时的 阶跃频率调谐过程,系统可以获得高响应带宽。在10 km传感距离上实现0.9m的空间分辨率和5kHz的响 应带宽。Wang等^[61]提出了一种全同间插LFM脉冲优 化该方案,并可以复用相同的LFM脉冲,直接解调混 合反射信号,从而避免了频分复用(FDM)技术中不一 致的相位偏移,结果表明频率响应范围高达277kHz, 实验装置图和结果如图14所示。Chen等^[50]在TGD-OFDR系统中引入了FDM技术,基于欠采样的方法 来降低模数转换器的采样率和数据量。通过连续注入 不同频率范围的LFM探针脉冲,在24.7 km的传感光 纤上检测到两个振动频率高达9 kHz的振动事件。 Zhang等^[62]通过使用辅助弱反射点作为解调单元,实 现了具有宽频率响应的长距离振动波形测量。实验中 成功测量了100 km中20 kHz的单点振动。同时,基于 LFM脉冲的DAS对于低频响应也得到了实际的应用 研究。Fernández-Ruiz等^[63]使用基于LFM脉冲结合 二维线性滤波算法滤除大量噪声分量,实现了0.02~ 1 Hz之间不同波段的地震波探测。与宽带地震仪测 量结果相比,低成本的LFM脉冲DAS也可以测量准 确的结果,确保了光纤传感器的可靠性。

图 14 全同间插LFM 脉冲技术^[61]。(a)实验装置;(b)功率谱密度 Fig. 14 Interleaved identical LFM pulses technology^[61]. (a) Experimental setup; (b) power spectral density

3.4 衰落噪声抑制

基于光纤瑞利散射的DAS技术,由于使用高相干 探测光波,在后向散射过程中会不可避免地出现干涉 衰落效应,在相应的位置会成为传感盲区^[64]。LFM脉 冲的DAS系统由于使用了调频脉冲可提升系统的信 噪比,并且具有抑制衰落噪声的效果。研究结果表明, 将LFM脉冲和FDM技术结合对干涉衰落的抑制效 果更显著。Chen等^[59]将一个包含四段频率的长LFM 脉冲作为探测光,使用匹配滤波分离出不同频率的瑞 利散射曲线,并通过旋转矢量求和方法整合相位信息 消除干涉衰落。此外,旋转矢量求和法不需对每个频 率信息分别进行解卷绕和相位差分操作,具有较快的 信号处理速率。本课题组提出异构双边带(HDSB) LFM脉冲调制方法^[65-67],利用LFM脉冲的斜率矢量特 性在上下边带分别加载调频带宽相同、斜率相反的 LFM信号,可同时实现噪声抑制和灵敏度倍增的效 果,低频噪声被抑制了27 dB,具体原理如图15所示。 此外,还提出了基于LFM脉冲的虚拟块阵列空间差分

图 15 HDSB-LFM 脉冲原理示意图^[66]。(a)传感光纤;(b)HDSB-LFM 脉冲;(c)相干时域信号 Fig. 15 Schematic diagram of LFM pulse principle of HDSB^[66]. (a) Sensing fiber; (b) HDSB-LFM pulse; (c) coherent time-domain signal

第 60 卷第 11 期/2023 年 6 月/激光与光电子学进展

相位提取方法,解决了干涉衰落的影响和信噪比差的问题,信噪比达到47.28 dB^[68]。此外,Xiong等^[69]提出 去啁啾和时域子啁啾脉冲的DAS系统,首先将高频率 的瑞利散射信息映射到小带宽的接收信号上,利用子 啁啾提取算法再将小带宽接收信号转换为大频率的瑞 利散射图样。

Table

在DAS关键性能指标进一步突破的研究过程中, 通常各指标之间会形成关联关系,因此主要从传感距 离、空间分辨率、频率响应和衰落噪声抑制4个关键指 标进行梳理。汇总了国内外近年来基于LFM脉冲 DAS的部分代表性工作如表2所示,由表2可知,这些 进展显著拓展了传统DAS的性能。

Year	Kowtoshnology	Sensing	Spatial	Frequency	Fading			
	Key technology	distance /km	resolution /m	response /Hz	noise			
2015	Time gated LFM pulse ^[27]	110	1.6		Yes			
2017	LFM pulse with first-order Raman amplification ^[43]	75	10	500	No			
2019	Hanning window pre-distorted LFM pulse ^[53]	108	5	455	No			
2020	Dual identical LFM pulse + weak $FBGs^{[56]}$	101.64	10	80	Yes			
2023	Frequency-diversity LFM pulse+diversity combining+Raman amplification ^[57]	1007	20	16	Yes			
2015	LFM pulse with 90° optical hybrid ^[37]	40	3.5	600	Yes			
2017	LFM probe pulse ^[38]	19.8	0.3	200	Yes			
2018	LFM Gaussian pulse ^[39]	50	0.34	700	Yes			
2019	LFM pulse and Non-matched filter ^[51]	10	2	5000	No			
2019	LFM pulse and matched filters ^[60]	10	0.9	5000	Yes			
2017	LFM pulse based on $FDM^{[50]}$	24.7	10	9000	Yes			
2020	Interleaved identical LFM pulse ^[61]	0.86	5	277000	No			
2020	LFM combined with weak reflector arrays ^[62]	100	0.1	20000	No			
2020	LFM pulse + 2D linear filtering ^[63]	42	10	0.02 - 1	No			
2020	LFM pulse + phase analysis method ^[68]	1.2	10	1500	No			
2020	Positive and negative LFM+RVSM+Raman amplification ^[70]	103	9.3	10800	No			
2021	Continuous LFM wave ^[71]	1	4.4	1000000	No			

	表 2	基于LFM脉冲的DAS性能指标发展历程	
2	Develop	agent of DAS performance indicators based on LEM p	1110

4 典型应用

作为一种环境适应性强、传感距离长、时空分辨 精度高、可实时监测的新型分布式光纤传感技术,研 究者们围绕DAS展开了大量的探索性试验,并在多 个领域中取得了重要的应用进展。典型的应用领域 主要集中在地球物理学和线性基础设施监测两方面。 对前者而言,需要获取具体位置的声振波形信息,传 统的感知系统(地震仪、检波器、节点阵列)在需要大 规模密集探测的场景中无法满足实际应用需求,因此 需要寻找一种具有空间采样密度高、测量范围广、成 本低、便捷度高等优势的系统来代替。铁路、隧道、管 线等线性基础设施因受地质灾害、人类活动的影响, 面临潜在损坏的风险,通常需要对声振事件进行精准 探测和分类,而不是只对事件具体的波形进行重构。 因此,根据具体波形信息的需求对DAS的典型应用 领域进行分类介绍。

4.1 地球物理学领域的应用

1) 天然地震波探测

地震活动的探测是了解地球内部结构和动力学行

为的关键。常见的地质灾害包括地震、海啸、泥石流和 山体滑坡等,这些灾害都会给人们的生产生活带来巨 大危害,因此研究地质灾害的演化规律,掌握预警灾害 的办法一直是相关领域的研究重点。相比于传统地震 波感知系统,DAS可以将数百公里的地埋光缆变成密 集排列的"地震仪",是一种空间连续的远程感知探测 技术,且具有更宽的频响范围,可有效弥补乃至代替现 有预警手段。

近年来,国内外研究人员开展了大量的现场试验 研究^[72-75]。2018年,Jousset等^[73]使用既有的通信光缆 实现天然地震波和人造震源的定位和监测,并初步实 现了断层破坏区的成像。2019年,Williams等^[74]使用 基于LFM脉冲的DAS系统观测了比利时近海的微 震、局部地表重力波和远震。捕捉到斐济发生的 8.2级地震,并与陆上地震检波器的数据进行比较,如 图 16所示。2020年,Walter等^[75]利用DAS在阿尔卑 斯山的冰川表面进行冰震和岩崩监测,根据监测结果 反演冰川及岩床厚度和材料特性。多项研究结果表 明,DAS可以充分利用海陆大规模冗余通信光缆^[76], 构建全球范围内的天然地震波检测网,实现地质灾害

预警。但是,目前的陆地和海底冗余通信光缆排布走向不统一,需要首先解决既有通信光缆的定标问题才能实现不同DAS系统的灵活阵列化。

2) 油气资源勘探

垂直地震剖面(VSP)分析是一种井中地震观测技术,在油气资源勘探领域广泛应用。常规的检波器在井中安装复杂、无法大规模密集布设,数据采集范围有限等问题,使得油气资源勘探的成本较高^[77]。DAS技术自身具备的众多优势可以很好地弥补VSP的不足,如可用永久安装的光缆代替沿钻井安装的检波器,占井空间小,其可以降低成本也不影响油井的其他作业。此外,传感光缆具备耐高温、抗腐蚀等特性,能够胜任各种复杂的井况。

2011年, Miller等^[78]证明DAS系统具备VSP采集的能力, 随后各国的科研工作者先后尝试使用DAS采集VSP数据, 如海基自喷井VSP^[79]、压裂开采时移VSP^[80]、多分量VSP检测^[81]、VSP数据质量评估^[82]等方面的研究工作。Li等^[83]在华北油田进行试验, 对比了可控震源激发条件下DAS与检波器采集的数据, 如图17所示。该结果表明:二者的振幅衰减规律、频谱及子波的形态均保持较好的一致性, 进一步验证了DAS具有VSP采集的能力。研究还发现检波器受套管内井筒波干扰严重, 而传感光缆则布设在套管外侧,

图 17 DAS 与检波器结果比较^[83]。(a)DAS 测量结果; (b)检波器 Z方向分量的 VSP 结果

因此DAS采集的数据受干扰更小。DAS虽然在VSP 采集上具备一定优势,但数据的信噪比较低,且缺少部 分方向的地震数据。因此,未来的实际勘探中还需对 光缆的布设形态进行改进,使得光缆与周边介质具备 更好的耦合效果。

第 60 卷第 11 期/2023 年 6 月/激光与光电子学进展

3) 地下结构探测与成像

地下空间结构的智能开发和工程安全是世界各国 发展的重要研究内容之一,地下结构微弱变化可能会 引起建筑与重大设施的毁灭性灾难,如土壤松散会导 致地面沉降与道路垮塌、永久冻土融解会造成地上建 筑物损害等。将DAS与面波成像技术相结合可实现 地下浅层结构的探测与成像。

Daley 等^[84]使用 Silixa 开发的 DAS 系统记录重锤 激发的面波信号,并成功提取出面波频散曲线,展示 了 DAS 在主动源面波成像中的应用潜能。Dou 等^[85] 利用 L 型光纤阵列实现了近地表交通噪声的监测与 分析。随后研究了 DAS 在近地表结构成像^[76]、环境 噪声滤除^[86]等方面的应用。Lin 等^[87]将 DAS 与背景 噪声成像技术结合,记录背景噪声数据并反演得到 DAS阵列下方近百米深处的横波波速结构。城市中 包含大量冗余的通信光缆,理论上只需要将DAS与 地下的通信光缆相连便可以进行数据采集,因此探 测过程会十分方便。不仅如此,利用DAS进行城市 浅层结构探测还具有其他优势,如探测范围广、成本 低、隐蔽性高、监测时间长等。Fang等^[88]利用斯坦福 校园下方的通信光缆作为DAS监测阵列,成功监测 到由周边地下室开挖所引起的浅层结构波速变化, 如图18所示。该实验结果证明:DAS具有监测地下 浅层结构变化的能力。随着DAS探测能力的进一步 完善,其将在城市地下空间结构探测和智慧城市发 展方面发挥巨大的作用。

图 18 DAS 阵列及探测结果^[88]。(a) DAS 阵列的布局;(b)采石场相对于 DAS 阵列的位置;(c) 开挖前后三段测得的平均速度 Fig. 18 DAS array and detection results^[88]. (a) Layout of the DAS array; (b) location of the quarry relative to the DAS array; (c) average velocities measured in three segments before and after excavation

4.2 线性基础设施的监测

线性基础设施(如铁路、公路、管道、隧道和输电线 路等)是一种跨度较长的通用基础设施,其具有距离 长、分布范围广、使用寿命长的特点,广泛分布于复杂 多变的自然环境中。这些线性基础设施在经济和社会 发展中发挥着重要作用。然而,由于地质灾害、地震、 腐蚀、老化、人类活动和其他多重因素的影响,线性基 础设施在其服役期间面临结构退化和损坏的潜在风 险^[5]。因此,为了确保线性基础设施的安全可靠运行, 需要稳健高效的监控系统。目前线性基础设施的监测 系统主要是基于非接触探测和岩土工程仪器探测技 术。在监测灵敏度、频率以及覆盖范围方面,这些方法 大多存在缺陷,使其难以对线性基础设施进行准确、实 时和全面监测。DAS在长距离、高密度和实时监测方 面具有独特优势,除了地球物理学领域,还在线性基础 设施监测领域发挥重要的作用。近年来,研究人员使

第 60 卷第 11 期/2023 年 6 月/激光与光电子学进展

用 DAS 对线性基础设施进行大量实地调查,主要列举 轨道健康监测、公路交通监测和管道安全监测方面的 应用。

1) 轨道健康监测

轨道交通在世界范围内需求不断增加,列车定位 与轨迹监测、高速铁路入侵监测、轮轨安全在线检测等 对铁路安全运营日益突出。在列车定位和速度监控 中,轨道电路技术被广泛使用^[89]。然而,在一些极端天 气条件下,如超强闪电,轨道电路技术可能无法正常工 作,应用其他传感技术也有限制。例如,全球定位系统 (GPS)在封闭环境(如隧道)中的感知能力较弱,无法 获得准确的列车运动信息。

DAS的发展为列车定位、速度监控和健康监测提

供了新的解决方案。2013年,英国国家铁路公司在风 河峡谷使用 OptaSense 公司的 DAS 系统进行列车轨 道沿线的落石监测模拟,经实验测试其检测准确率超 过 95%,模拟落石监测结果如图 19 所示^[30]。2020年, Milne等^[91]基于 DAS 对铁路的机械性能进行连续的时 间和空间监控。使 DAS 系统对附着在长度为 10.4 m 的单轨腹板一侧的顶部和底部的光纤进行传感监测。 虽然案例研究站点的长度相对较短,但开发的原则表 明,该系统也同样适用于长度较长的轨道。Kowarik 等^[92]基于 DAS 系统提出了优化的人工神经网络算法, 沿时间或空间方向定位数据中的列车信号,并且发现 以 160 km/h速度行驶的列车,速度标准偏差小于 5 km/h。

图 19 模拟落石监测结果^[90]。(a)铁路沿线落石;(b)落石监测瀑布图

Fig. 19 Simulated rockfall monitoring results^[90]. (a) Rockfall along the railway; (b) rockfall monitoring waterfall

2) 公路交通监测

公路交通是人们生活的重要组成部分,为了监控 公路交通,近年来开发了各种固定(雷达枪、道路传感 器、摄像头等)和移动(车辆GPS、移动电话等)监控技 术。前者可以提供高分辨率的监测数据,但其安装和 维护成本较高,空间覆盖率相对较低。后者具有较高 的空间覆盖率,但其数据收集频率较低,无法进行实时 监控,可能还涉及个人隐私问题。因此,迫切需要新的 交通监控系统。

DAS系统可为公路交通监控提供替代方案。通 信光缆大多预埋在道路下方,这种检测方法具有很强 的隐蔽性,且埋在地下的电缆可以避免长期监测过程 中的物理损坏。Wang等^[93]使用道路下方的通信电缆 监测了帕萨迪纳玫瑰游行。通过分析传感光缆收集的 振动信息,成功识别交通特征信号,如行人、摩托车和 彩车。此外,还提出了一种测量道路交通流量和速度 的方法,并分析了新冠肺炎爆发前后的城市道路交通 状况^[94],结果如图20所示。可以看到新冠肺炎爆发 后,城市总体交通流量下降,而速度有所提高。经过比 较分析,DAS的监测结果与其他监测技术的结果具有 良好的一致性,充分证明了DAS在公路交通监测中的 可行性。Catalano等^[95]提出了霍夫变换在车辆计数中 的应用,并演示了自动检测和计数车辆的算法。现场 测试表明:该算法的准确率达到73%。

3) 管道安全监测

管道作为安全、廉价的运输设备,广泛用于石油、 天然气和其他产品的运输。管道运行状态的实时监测 可以有效维护管道安全,延长管道使用寿命。近年来, 分布式光纤传感技术在管道安全监测中得到广泛应 用。例如,分布式温度传感(DTS)技术用于监测管道 泄漏^[96-97],分布式应变传感(DSS)技术用于监控管道 变形^[98]。然而,其为静态监测技术,不能对管道进行实 时和动态监测。

研究人员提出将DAS与人工智能算法(如模式识 别、人工神经网络和支持向量机)相结合,以处理大量 实时监测数据^[99-101]。近期的研究工作使用了多种模式 识别算法来分类和识别不同类型的机械入侵信号,如 大型挖掘机撞击地面、大型挖掘机刮擦地面和小型挖 掘机沿着地面移动等^[102]。这些算法显示出良好的分 类和识别效果,可以显著降低入侵检测中的误报率。 同时,为了解决复杂和恶劣监测环境中人类和动物活 动分类的困难,He等^[99]设计了一个双阶段识别网络并 进行现场实验,探索该网络对五种不同类型入侵事件 的识别精度,如动物入侵、人类入侵和机械挖掘,平均 识别率达到97.04%。此外,Yang等^[100]提出一种用于 远程管道入侵监测的半监督学习方法,在低信噪比条

件下有效提高了识别和定位入侵事件的能力。

5 未来展望

1) DAS 数据存储、传输和处理。基于 LFM 脉冲 的 DAS 使用 LFM 脉冲作为探测光脉冲,与传统φ -OTDR技术不同的是,其原始信号为迹线局部位移的 特征,因此数据处理时分析计算成本和性能改进之间 需要适当权衡。虽然使用空间和时间的二维算法来确 定迹线局部位移可以获得比使用单个迹线的信息更好 的结果,但这种算法的计算量仍然过大,且不适合实时 处理显示。由于传感光缆上的每个传感单元都以高频 率收集信息,记录的数据量非常庞大。数十公里光缆 每天收集的信息量甚至可达太字节级别,海量数据使 得存储、传输和处理任务变得复杂且耗费时间。在数 据存储方面,一些DAS制造商提供可以减少记录数量 的过滤和压缩系统。然而,压缩后会丢失部分有价值 的数据。在传输方面,很少有无线网络平台支持DAS 记录的传输,因此数据记录一般通过硬盘等方式传输。 在处理方面,尽管人工智能算法可以提高处理速度,但 面对TB级别的海量监测数据,数据处理速度仍需提 高。此外,联合分析 DAS 数据和其他监测数据(如 DTS数据、检波器数据等)也是一大挑战。

2) 基于 LFM 脉冲的通信传感一体化。在分布式 光纤传感系统中,通过对 LFM 脉冲的强度、相位、偏振 或频率等光学参数进行调制来测量光纤沿线的物理参 数变化,而在光纤通信系统中,则使用 LFM 脉冲来实

现数据传输。LFM技术属于光纤通信中的一种扩展 频谱调制技术,基于LFM脉冲的分布式光纤传感与光 纤通信系统在架构、信号检测和信号解调方面的高度 相似性使二者非常适合集成到一个系统中,用于同时 进行数据传输和环境监测。近年来, φ -OTDR已通过 波分复用和频分复用集成到相干光通信网络中,以实 现数据传输和分布式振动检测。现有光纤网络通过集 成化探索了交通监控和道路粗糙度检测。基于目前 DAS的应用情况,将二者一体化后还可能开发更多潜 在的功能。然而,现有的方案大多是在传感和通信中 共享光纤,仍有两个单独的系统。同时,传感中所使用 的强脉冲光容易激发非线性效应,传输性能可能会降 低。此外,相干光通信通常用于远程传输,似乎与传统 的分布式光纤传感距离不匹配。因此将二者集成为一 体,保持传输性能的同时又不影响传感探测,是值得进 一步研究的科学问题。

6 结 语

DAS技术作为光纤传感测量技术的发展前沿之一,具有环境适应性强、传感范围大、信道间光速同步、时空分辨精度高等不可替代的优势,已经在地球物理学的多个领域以及一系列线性基础设施安全在线监测方面展示出独特的技术优势和初步的应用。按调制脉冲的频率成分对DAS技术进行分类整理,详细介绍了基于LFM脉冲DAS技术的传感物理机制,并围绕各关键科学技术指标梳理了相应的研究进程,列举了

第 60 卷第 11 期/2023 年 6 月/激光与光电子学进展

DAS在地震波、油气资源勘探、地下结构探测以及线 性基础设施监测中的典型应用进展,并对未来可能的 发展趋势进行了探讨。随着科技的不断进步,相信 DAS技术可以进一步完善,在更广阔的领域得到深入 应用。

参考文献

 [1] 蔡海文,叶青,王照勇,等.基于相干瑞利散射的分布 式光纤声波传感技术[J].激光与光电子学进展,2020, 57(5):050001.

Cai H W, Ye Q, Wang Z Y, et al. Distributed optical fiber acoustic sensing technology based on coherent Rayleigh scattering[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050001.

- [2] 何祖源,刘庆文.光纤分布式声波传感器原理与应用
 [J].激光与光电子学进展, 2021, 58(13): 1306001.
 He Z Y, Liu Q W. Principles and applications of optical fiber distributed acoustic sensors[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306001.
- [3] 王照勇,卢斌,叶蕾,等.分布式光纤声波传感及其地 震波检测应用[J].激光与光电子学进展,2021,58(13): 1306006.

Wang Z Y, Lu B, Ye L, et al. Distributed optical fiber acoustic sensing and its application to seismic wave monitoring[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306006.

 [4] 孙琪真,范存政,李豪,等.光纤分布式声波传感技术 在石油行业的研究进展[J].石油物探,2022,61(1):50-59,77.

Sun Q Z, Fan C Z, Li H, et al. Progress of research on optical fiber distributed acoustic sensing technology in petroleum industry[J]. Geophysical Prospecting for Petroleum, 2022, 61(1): 50-59, 77.

- [5] Zhu H H, Liu W, Wang T, et al. Distributed acoustic sensing for monitoring linear infrastructures: current status and trends[J]. Sensors, 2022, 22(19): 7550.
- [6] Juarez J C, Maier E W, Choi K N, et al. Distributed fiber-optic intrusion sensor system[J]. Journal of Lightwave Technology, 2005, 23(6): 2081-2087.
- [7] Liu S Q, Yu F H, Hong R, et al. Advances in phasesensitive optical time-domain reflectometry[J]. Opto-Electronic Advances, 2022, 5(3): 200078.
- [8] 吴慧娟,刘欣雨,饶云江.基于Φ-OTDR的光纤分布式 传感信号处理及应用[J].激光与光电子学进展,2021, 58(13):1306003.

Wu H J, Liu X Y, Rao Y J. Processing and application of fiber optic distributed sensing signal based on Φ -OTDR [J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306003.

- [9] 张旭苹,丁哲文,洪瑞,等.相位敏感光时域反射分布 式光纤传感技术[J].光学学报,2021,41(1):0106004. Zhang X P, Ding Z W, Hong R, et al. Phase sensitive optical time-domain reflective distributed optical fiber sensing technology[J]. Acta Optica Sinica, 2021, 41(1): 0106004.
- [10] Juškaitis R, Mamedov A M, Potapov V T, et al.

Distributed interferometric fiber sensor system[J]. Optics Letters, 1992, 17(22): 1623-1625.

- [11] Koo K P, Tveten A B, Dandridge A. Passive stabilization scheme for fiber interferometers using (3×3) fiber directional couplers[J]. Applied Physics Letters, 1982, 41(7): 616-618.
- [12] 宋牟平, 尹聪, 陆燕, 等. 基于 3×3 迈克耳孙干涉仪的 四路检测相位解调Φ-OTDR[J]. 光学学报, 2018, 38
 (8): 0806001.
 Song M P, Yin C, Lu Y, et al. Four-channel detecting phase demodulation Φ-OTDR based on 3×3 Michelson interferometer[J]. Acta Optica Sinica, 2018, 38(8): 0806001.
- [13] Fang G S, Xu T W, Feng S W, et al. Phase-sensitive optical time domain reflectometer based on phasegenerated carrier algorithm[J]. Journal of Lightwave Technology, 2015, 33(13): 2811-2816.
- [14] Shang Y, Yang Y H, Wang C, et al. Optical fiber distributed acoustic sensing based on the self-interference of Rayleigh backscattering[J]. Measurement, 2016, 79: 222-227.
- [15] Wang Z N, Zhang L, Wang S, et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection[J]. Optics Express, 2016, 24(2): 853-858.
- [16] 刘珉含, 王旭, 于森, 等.相位敏感光时域反射系统的时钟同源 I/Q 解调方法[J]. 光子学报, 2018, 47(8): 0806003.

Liu M H, Wang X, Yu M, et al. Clock homologues I/Q demodulation in phase sensitive optical time-domain reflection system[J]. Acta Photonica Sinica, 2018, 47(8): 0806003.

- [17] Tu G J, Zhang X P, Zhang Y X, et al. The development of an Φ-OTDR system for quantitative vibration measurement[J]. IEEE Photonics Technology Letters, 2015, 27(12): 1349-1352.
- [18] Liu H H, Pang F F, Lü L B, et al. True phase measurement of distributed vibration sensors based on heterodyne Φ -OTDR[J]. IEEE Photonics Journal, 2018, 10(1): 7101309.
- [19] Alekseev A E, Vdovenko V S, Gorshkov B G, et al. A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal[J]. Laser Physics, 2015, 25(6): 065101.
- [20] He X G, Xie S R, Liu F, et al. Multi-event waveformretrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR[J]. Optics Letters, 2017, 42(3): 442-445.
- [21] Hartog A H, Liokumovich L B, Ushakov N A, et al. The use of multi-frequency acquisition to significantly improve the quality of fibre-optic-distributed vibration sensing[J]. Geophysical Prospecting, 2018, 66(S1): 192-202.
- [22] Hartog A H, Liokumovich L B. Phase sensitive coherent OTDR with multi-frequency interrogation: US20130113629[P]. 2013-05-09.
- [23] Zhang J X, Jiang W J, Yu Y, et al. Photonics-based simultaneous measurement of distance and velocity using

第 60 卷第 11 期/2023 年 6 月/激光与光电子学进展

封底文章·特邀综述

multi-band LFM microwave signals with opposite chirps [J]. Optics Express, 2019, 27(20): 27580-27591.

- [24] Xu Z Y, Tang L Z, Zhang H X, et al. Simultaneous realtime ranging and velocimetry via a dual-sideband chirped lidar[J]. IEEE Photonics Technology Letters, 2017, 29 (24): 2254-2257.
- [25] 周逸潇,赵尚弘,李轩,等.面向通雷一体化的啁啾调 制 倍 频 LFM 产 生 研 究 [J]. 中 国 激 光, 2022, 49(7): 0706001.

Zhou Y X, Zhao S H, Li X, et al. Chirp modulated and frequency mutiplied LFM for communication radar integration[J]. Chinese Journal of Lasers, 2022, 49(7): 0706001.

- [26] Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 1998, 37(10): 1735-1740.
- [27] Liu Q W, Fan X Y, He Z Y. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range[J]. Optics Express, 2015, 23(20): 25988-25995.
- [28] Wojcik A K. Signal statistics of phase dependent optical time domain reflectometry[D]. College Station: Texas A&M University, 2006.
- [29] Masoudi A, Belal M, Newson T P. A distributed optical fibre dynamic strain sensor based on phase-OTDR[J]. Measurement Science and Technology, 2013, 24(8): 085204.
- [30] Koyamada Y, Imahama M, Kubota K, et al. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR[J]. Journal of Lightwave Technology, 2009, 27 (9): 1142-1146.
- [31] Zhou L, Wang F, Wang X C, et al. Distributed strain and vibration sensing system based on phase-sensitive OTDR[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1884-1887.
- [32] Jacovitti G, Scarano G. Discrete time techniques for time delay estimation[J]. IEEE Transactions on Signal Processing, 1993, 41(2): 525-533.
- [33] Ma Z, Jiang J F, Wang S A, et al. High performance distributed acoustic sensor based on digital LFM pulse coherent-optical time domain reflectometer for intrapulse event[J]. Applied Physics Express, 2020, 13(1): 012016.
- [34] Pastor-Graells J, Martins H F, Garcia-Ruiz A, et al. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses[J]. Optics Express, 2016, 24(12): 13121-13133.
- [35] Liehr S, Münzenberger S, Krebber K. Wavelengthscanning coherent OTDR for dynamic high strain resolution sensing[J]. Optics Express, 2018, 26(8): 10573-10588.
- [36] 王一凡,刘庆文,李赫,等.基于瑞利图形相关的光纤 分布式动态应变传感器[J].中国激光,2021,48(11): 1110002.

Wang Y F, Liu Q W, Li H, et al. Distributed fiber-optic dynamic strain sensor based on spectra correlation of Rayleigh backscattering[J]. Chinese Journal of Lasers, 2021, 48(11): 1110002.

- [37] Wang S, Fan X Y, Liu Q W, et al. Distributed fiberoptic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 2015, 23 (26): 33301-33309.
- [38] Lu B, Pan Z Q, Wang Z Y, et al. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse[J]. Optics Letters, 2017, 42(3): 391-394.
- [39] Mompó J J, Martín-López S, González-Herráez M, et al. Sidelobe apodization in optical pulse compression reflectometry for fiber optic distributed acoustic sensing
 [J]. Optics Letters, 2018, 43(7): 1499-1502.
- [40] Soto M A, Lu X, Martins H F, et al. Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers[J]. Optics Express, 2015, 23(19): 24923-24936.
- [41] Lu X, Soto M A, Thévenaz L. Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry[J]. Optics Express, 2017, 25(14): 16059-16071.
- [42] Pastor-Graells J, Cortés L R, Fernández-Ruiz M R, et al. SNR enhancement in high-resolution phase-sensitive OTDR systems using chirped pulse amplification concepts[J]. Optics Letters, 2017, 42(9): 1728-1731.
- [43] Pastor-Graells J, Nuño J, Fernández-Ruiz M R, et al. Chirped-pulse phase-sensitive reflectometer assisted by first-order Raman amplification[J]. Journal of Lightwave Technology, 2017, 35(21): 4677-4683.
- [44] Fernández-Ruiz M R, Pastor-Graells J, Martins H F, et al. Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors[J]. Journal of Lightwave Technology, 2018, 36(4): 979-985.
- [45] Bhatta H D, Costa L, Garcia-Ruiz A, et al. Dynamic measurements of 1000 microstrains using chirped-pulse phase-sensitive optical time-domain reflectometry[J]. Journal of Lightwave Technology, 2019, 37(18): 4888-4895.
- [46] Fernández-Ruiz M R, Costa L, Martins H F. Distributed acoustic sensing using chirped-pulse phasesensitive OTDR technology[J]. Sensors, 2019, 19(20): 4368.
- [47] Marcon L, Soriano-Amat M, Veronese R, et al. Analysis of disturbance-induced "virtual" perturbations in chirped pulse φ-OTDR[J]. IEEE Photonics Technology Letters, 2020, 32(3): 158-161.
- [48] Marcon L, Soto M A, Soriano-Amat M, et al. Highresolution chirped-pulse φ-OTDR by means of sub-bands processing[J]. Journal of Lightwave Technology, 2020, 38(15): 4142-4149.
- [49] Wang S H, Jiang J F, Wang S A, et al. GPU-based fast processing for a distributed acoustic sensor using an LFM pulse[J]. Applied Optics, 2020, 59(35): 11098-11103.
- [50] Chen D, Liu Q W, Fan X Y, et al. Distributed fiberoptic acoustic sensor with enhanced response bandwidth and high signal-to-noise ratio[J]. Journal of Lightwave Technology, 2017, 35(10): 2037-2043.
- [51] Chen D, Liu Q W, Wang Y F, et al. Fiber-optic distributed acoustic sensor based on a chirped pulse and a

non-matched filter[J]. Optics Express, 2019, 27(20): 29415-29424.

- [52] Steinberg I, Shiloh L, Gabai H, et al. Over 100 km long ultra-sensitive dynamic sensing via Gated-OFDR[J]. Proceedings of SPIE, 2015, 9634: 96341B.
- [53] Chen D, Liu Q W, He Z Y. 108-km distributed acoustic sensor with 220-pε/√Hz strain resolution and 5-m spatial resolution[J]. Journal of Lightwave Technology, 2019, 37(18): 4462-4468.
- [54] Xiong J, Wang Z N, Wu Y, et al. Single-shot COTDR using sub-chirped-pulse extraction algorithm for distributed strain sensing[J]. Journal of Lightwave Technology, 2020, 38(7): 2028-2036.
- [55] Zhang J D, Wu H T, Zheng H, et al. 80 km fading free phase-sensitive reflectometry based on multi-carrier NLFM pulse without distributed amplification[J]. Journal of Lightwave Technology, 2019, 37(18): 4748-4754.
- [56] Liang G H, Jiang J F, Liu K, et al. Phase demodulation method based on a dual-identical-chirped-pulse and weak fiber Bragg gratings for quasi-distributed acoustic sensing [J]. Photonics Research, 2020, 8(7): 1093-1099.
- [57] Ip E, Huang Y K, Huang M F, et al. DAS over 1, 007-km hybrid link with 10-Tb/s DP-16QAM co-propagation using frequency-diverse chirped pulses[J]. Journal of Lightwave Technology, 2023, 41(4): 1077-1086.
- [58] Wu M S, Fan X Y, Liu Q W, et al. Quasi-distributed fiber-optic acoustic sensing system based on pulse compression technique and phase-noise compensation[J]. Optics Letters, 2019, 44(24): 5969-5972.
- [59] Chen D, Liu Q W, He Z Y. Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR[J]. Optics Express, 2017, 25 (7): 8315-8325.
- [60] Wang Y F, Liu Q W, Chen D, et al. Distributed fiberoptic dynamic-strain sensor with sub-meter spatial resolution and single-shot measurement[J]. IEEE Photonics Journal, 2019, 11(6): 6803608.
- [61] Wang Z T, Jiang J L, Wang Z N, et al. Quasidistributed acoustic sensing with interleaved identical chirped pulses for multiplying the measurement slew-rate [J]. Optics Express, 2020, 28(26): 38465-38479.
- [62] Zhang Z P, Fan X Y, He Z Y. Long-range and wideband vibration sensing by using phase-sensitive OFDR to interrogate a weak reflector array[J]. Optics Express, 2020, 28(12): 18387-18396.
- [63] Fernández-Ruiz M R, Soto M A, Williams E F, et al. Distributed acoustic sensing for seismic activity monitoring[J]. APL Photonics, 2020, 5(3): 030901.
- [64] 林圣淘,王子南,熊吉,等.光纤瑞利散射传感抗干涉 衰落技术研究进展[J].激光与光电子学进展,2021,58
 (13):1306008.
 Lin S T, Wang Z N, Xiong J, et al. Progresses of antiinterference foliage technologies for Daulaich scattering.

interference-fading technologies for Rayleigh-scatteringbased optical fiber sensing[J]. Laser & Optoelectronics Progress, 2021, 58(13): 10306008.

[65] Ma Z, Jiang J F, Wang S A, et al. Double-sideband heterogeneous pulse modulation method for distributed acoustic sensing[J]. Proceedings of SPIE, 2018, 10618: 1061807.

- [66] Ma Z, Jiang J F, Wang S A, et al. Phase drift noise suppression for coherent-OTDR sensing based on heterogeneous dual-sideband LFM pulse[J]. Applied Physics Express, 2020, 13(8): 082002.
- [67] 马喆,王逸璇,江俊峰,等.光纤分布式声传感的动态 范围扩展方法研究[J].光学学报,2021,41(13):1306008.
 Ma Z, Wang Y X, Jiang J F, et al. Research on dynamic range expansion method of fiber-optic distributed acoustic sensing[J]. Acta Optica Sinica, 2021, 41(13): 1306008.
- [68] Ma Z, Jiang J F, Liu K, et al. Virtual-block-array phase analysis for distributed acoustic sensors with a high signalto-noise ratio reconstruction waveform[J]. Optics Express, 2020, 28(17): 24577-24585.
- [69] Xiong J, Wang Z N, Jiang J L, et al. High sensitivity and large measurable range distributed acoustic sensing with Rayleigh-enhanced fiber[J]. Optics Letters, 2021, 46(11): 2569-2572.
- [70] Xiong J, Wang Z N, Wu Y, et al. Long-distance distributed acoustic sensing utilizing negative frequency band[J]. Optics Express, 2020, 28(24): 35844-35856.
- [71] Jiang J L, Wang Z N, Wang Z T, et al. Continuous chirped-wave phase-sensitive optical time domain reflectometry[J]. Optics Letters, 2021, 46(3): 685-688.
- [72] 苟量,张少华,余刚,等.光纤地球物理技术的发展现状与展望[J].石油物探,2022,61(1):15-31.
 Gou L, Zhang S H, Yu G, et al. Optical fiber geophysics: development status and future prospects[J].
 Geophysical Prospecting for Petroleum, 2022, 61(1):15-31.
- [73] Jousset P, Reinsch T, Ryberg T, et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features[J]. Nature Communications, 2018, 9: 2509.
- [74] Williams E F, Fernández-Ruiz M R, Magalhaes R, et al. Distributed sensing of microseisms and teleseisms with submarine dark fibers[J]. Nature Communications, 2019, 10: 5778.
- [75] Walter F, Gräff D, Lindner F, et al. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain[J]. Nature Communications, 2020, 11: 2436.
- [76] Ajo-Franklin J B, Dou S, Lindsey N J, et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection[J]. Scientific Reports, 2019, 9: 1328.
- [77] Mateeva A, Lopez J, Mestayer J, et al. Distributed acoustic sensing for reservoir monitoring with VSP[J]. The Leading Edge, 2013, 32(10): 1278-1283.
- [78] Miller D, Parker T, Kashikar S, et al. Vertical seismic profiling using a fibre-optic cable as a distributed acoustic sensor[C]//Proceedings 74th EAGE Conference and Exhibition incorporating EUROPEC 2012, June 4-7, 2012, Copenhagen, Denmark. Netherlands: EAGE Publications BV, 2012: 803.
- [79] Mateeva A, Lopez J, Potters H, et al. Distributed acoustic sensing for reservoir monitoring with vertical

第 60 卷第 11 期/2023 年 6 月/激光与光电子学进展

第 60 卷第 11 期/2023 年 6 月/激光与光电子学进展

封底文章·特邀综述

seismic profiling[J]. Geophysical Prospecting, 2014, 62 (4): 679-692.

- [80] Byerley G, Monk D, Aaron P, et al. Time-lapse seismic monitoring of individual hydraulic frac stages using a downhole DAS array[J]. The Leading Edge, 2018, 37 (11): 802-810.
- [81] Ivan L C N, Sava P. Multicomponent distributed acoustic sensing: concept and theory[J]. Geophysics, 2018, 83(2): 1-8.
- [82] Willis M E, Barfoot D, Ellmauthaler A, et al. Quantitative quality of distributed acoustic sensing vertical seismic profile data[J]. The Leading Edge, 2016, 35(7): 605-609.
- [83] 李彦鹏,李飞,李建国,等. DAS技术在井中地震勘探的应用[J].石油物探, 2020, 59(2): 242-249.
 Li Y P, Li F, Li J G, et al. Application of distributed acoustic sensing in borehole seismic exploration[J].
 Geophysical Prospecting for Petroleum, 2020, 59(2): 242-249.
- [84] Daley T M, Freifeld B M, Ajo-Franklin J, et al. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring[J]. The Leading Edge, 2013, 32(6): 699-706.
- [85] Dou S, Lindsey N, Wagner A M, et al. Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study[J]. Scientific Reports, 2017, 7: 11620.
- [86] Martin E R, Huot F, Ma Y B, et al. A seismic shift in scalable acquisition demands new processing: fiber-optic seismic signal retrieval in urban areas with unsupervised learning for coherent noise removal[J]. IEEE Signal Processing Magazine, 2018, 35(2): 31-40.
- [87] 林融冰,曾祥方,宋政宏,等.分布式光纤声波传感系统在近地表成像中的应用Ⅱ:背景噪声成像[J].地球物理学报,2020,63(4):1622-1629.

Lin R B, Zeng X F, Song Z H, et al. Distributed acoustic sensing for imaging shallow structure II : ambient noise tomography[J]. Chinese Journal of Geophysics, 2020, 63(4): 1622-1629.

- [88] Fang G, Li Y E, Zhao Y M, et al. Urban near-surface seismic monitoring using distributed acoustic sensing[J]. Geophysical Research Letters, 2020, 47(6): e2019GL086 115.
- [89] Wybo J L. Track circuit reliability assessment for preventing railway accidents[J]. Safety Science, 2018, 110: 268-275.
- [90] Akkerman J, Prahl F. Fiber optic sensing for detecting rock falls on rail rights of way[M]. Washington, D.C.: AWEMA, 2013: 1099-1118.
- [91] Milne D, Masoudi A, Ferro E, et al. An analysis of railway track behaviour based on distributed optical fibre

acoustic sensing[J]. Mechanical Systems and Signal Processing, 2020, 142: 106769.

- [92] Kowarik S, Hussels M T, Chruscicki S, et al. Fiber optic train monitoring with distributed acoustic sensing: conventional and neural network data analysis[J]. Sensors, 2020, 20(2): 450.
- [93] Wang X, Williams E F, Karrenbach M, et al. Rose parade seismology: signatures of floats and bands on optical fiber[J]. Seismological Research Letters, 2020, 91 (4): 2395-2398.
- [94] Wang X, Zhan Z W, Williams E F, et al. Ground vibrations recorded by fiber-optic cables reveal traffic response to COVID-19 lockdown measures in Pasadena, California[J]. Communications Earth & Environment, 2021, 2: 160.
- [95] Catalano E, Coscetta A, Cerri E, et al. Automatic traffic monitoring by ϕ -OTDR data and Hough transform in a real-field environment[J]. Applied Optics, 2021, 60(13): 3579-3584.
- [96] Li J A, Zhang M J. Physics and applications of Raman distributed optical fiber sensing[J]. Light: Science & Applications, 2022, 11: 128.
- [97] Madabhushi S S C, Elshafie M Z E B, Haigh S K. Accuracy of distributed optical fiber temperature sensing for use in leak detection of subsea pipelines[J]. Journal of Pipeline Systems Engineering and Practice, 2015, 6(2): 04014014.
- [98] Li H J, Zhu H H, Li Y H, et al. Experimental study on uplift mechanism of pipeline buried in sand using highresolution fiber optic strain sensing nerves[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14 (4): 1304-1318.
- [99] He T, Liu Y J, Zhang S X, et al. High accuracy intrusion pattern recognition using a dual-stage-recognition network for fiber optic distributed sensing system[C]//Conference on Lasers and Electro-Optics, May 9-14, 2021, San Jose, California. Washington, D. C.: Optica Publishing Group, 2021: JW1A.119.
- [100] Yang Y Y, Zhang H F, Li Y. Long-distance pipeline safety early warning: a distributed optical fiber sensing semi-supervised learning method[J]. IEEE Sensors Journal, 2021, 21(17): 19453-19461.
- [101] Wu H J, Chen J P, Liu X R, et al. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS[J]. Journal of Lightwave Technology, 2019, 37(17): 4359-4366.
- [102] Tejedor J, Martins H F, Piote D, et al. Toward prevention of pipeline integrity threats using a smart fiberoptic surveillance system[J]. Journal of Lightwave Technology, 2016, 34(19): 4445-4453.